
VirtualBox is collapsing: a
n-day story

$ whoami - TL;DR: Just a noob

Luca Ginex aka LukeGix

Vulnerability Researcher @Exodus Intelligence

I’m interested in operating systems and low-level exploit development

Personal blog: https://exploiter.dev

https://exodusintel.com/
https://exploiter.dev

$ mov qword ptr [slides], 0x4141414141414141
Emulated devices

● Trap-and-emulate
● VirtualBox Pluggable Device Manager (PDM)
● Emulated PCI Bus

E1000 device internals

● Internal registers
● Packet descriptors

Root cause analysis

● Parsing logic
● Integer underflow
● Heap overflow
● Buffer overflow

$ mov qword ptr [slides], 0x4242424242424242

Exploitation process

● ASLR bypass
● ROP chain
● PLT/IAT exploitation

Demo (Windows)

Demo (Linux)

OS Recap

OS (kernel)

Process 1 Process 2 Process 3

Hardware
1

Hardware
2

Hardware
3

OS Recap

● Processes are isolated

● They use the OS to interact with hardware devices

● The OS schedules the execution of the processes

● The OS acts as a ‘filter’ for requests coming from processes

OS Recap - HV version

OS (kernel)

Proce
ss 1

Proce
ss 2

Proce
ss 3

Hardware
1

Hardware
2

Hardware
3

OS (kernel)

Proce
ss 1

Proce
ss 2

Proce
ss 3

Hypervisor (VMM)

OS Recap - HV version

● Guest OSes are isolated

● They use the VMM to interact with hardware devices

● The VMM schedules the execution of the guest OSes

● The VMM acts as a ‘filter’ for requests coming from guest OSes

Emulated devices: trap-and-emulate

The guest OS interacts with
hardware as if it was on bare metal.
A privileged instruction (memory
access, I/O instructions, access to
special registers,...) causes a trap
into hypervisor code.

Usually there is a dispatch routine
that calls the appropriate handler.

VirtualBox Architecture

VBox(2)DD: modules that include
code for emulated devices

VBoxDD(2)R0: R0 components of
emulated devices

VBoxRT: Runtime functions
(allocations and other helper
functions)

VirtualBox.exe: Frontend GUI, it
communicates with the R3 core using
COM

Emulated devices: Pluggable Device Manager (PDM)

The PDM is responsible of
instantiating fake hardware
devices during the boot of the VM.

It loops through all required
devices and for each one of them
it creates a C struct that
represents the state of that
particular device.

Hardware access: MMIO || I/O Ports

The operating system can configure
hardware devices by accessing internal
registers of devices through MMIO
(Memory-mapped I/O) and I/O Ports.

● ioremap() on Linux
● MmMapIoSpace() on Windows
● in[b|w] / out[b|w] assembly instructions

The APIs return a kernel virtual address that
the kernel can use to interact with devices.

The iomMmioHandler()
function is used to handle
accesses to registered
MMIO regions.

E1000 ethernet controller

● It is configurable from the device driver
using a MMIO region

● MMIO address is read from PCI Base
Address Register (BAR) at boot time

● On Linux, the pci_walk_bus() function
is used to enumerate all devices
connected to the PCI bus

E1000 Internal Registers

E1000 Internal Registers 2

E1000 Internal Registers 3

E1000 Internals: Packet Descriptors - Context Descriptor

Intel E1000 PDF specification

https://pdos.csail.mit.edu/6.828/2018/readings/hardware/8254x_GBe_SDM.pdf

E1000 Internals: Packet Descriptors - Data Descriptor

Intel E1000 PDF specification

https://pdos.csail.mit.edu/6.828/2018/readings/hardware/8254x_GBe_SDM.pdf

E1000 Internals: Packet Descriptors

C
on

te
xt

 D
es

cr
ip

to
r

E1000 Internals: Packet Descriptors

C
on

te
xt

 D
es

cr
ip

to
r

D
at

a
D

es
cr

ip
to

r 1

E1000 Internals: Packet Descriptors

C
on

te
xt

 D
es

cr
ip

to
r

D
at

a
D

es
cr

ip
to

r 1

D
at

a
D

es
cr

ip
to

r 2

E1000 Internals: Packet Descriptors

C
on

te
xt

 D
es

cr
ip

to
r

D
at

a
D

es
cr

ip
to

r 1

D
at

a
D

es
cr

ip
to

r 2

D
at

a
D

es
cr

ip
to

r 3
E

oP
 =

 1

E1000 Internals: Packet Descriptors

C
on

te
xt

 D
es

cr
ip

to
r

D
at

a
D

es
cr

ip
to

r 1

D
at

a
D

es
cr

ip
to

r 2

D
at

a
D

es
cr

ip
to

r 3
E

oP
 =

 1

E1000 Internals: Packet Descriptors

C
on

te
xt

 D
es

cr
ip

to
r

D
at

a
D

es
cr

ip
to

r 1

D
at

a
D

es
cr

ip
to

r 2

D
at

a
D

es
cr

ip
to

r 3
E

oP
 =

 1

1 Packet!

E1000 Internals: Driver Operations

In order to send packets to the E1000 controller, the E1000 driver must:

1. Allocate memory for the transmit queue
2. Put descriptors inside the transmit queue
3. Set TBAL and TBAH with the physical address of the transmit queue
4. Set TDT and TDH equal to zero
5. Turn the E1000 controller on
6. Set TDT equal to the next free slot in the transmit queue

E1000 Internals: Transmit Queue

TDH
TDT

E1000 Internals: Transmit Queue

TDH
TDT

Tr
an

sm
it

D
es

cr
ip

to
r

E1000 Internals: Transmit Queue

TDH
TDT

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

E1000 Internals: Transmit Queue

TDH
TDT

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

E1000 Internals: Transmit Queue

TDH
TDT

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

E1000 Internals: Transmit Queue

TDH
TDT

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

E1000 Internals: Transmit Queue

TDH
TDT

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

E1000 Internals: Transmit Queue

TDH
TDT

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

E1000 Internals: Transmit Queue

TDH TDT

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

E1000 Internals: Transmit Queue

TDH
TDT

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

Tr
an

sm
it

D
es

cr
ip

to
r

E1000: VirtualBox Implementation

Packet Descriptors: VirtualBox Parsing Logic

VirtualBox parses one packet at a time.

At first, VirtualBox parses the Context Descriptor.

e1kXmitDesc() parses the Data
Descriptors of the packet and it adds
them to the Ethernet Frame.

Packet Descriptors: VirtualBox Parsing Logic

The PDMDevHlpPhysRead() function reads u16Len bytes from guest memory,
starting at address PhysAddr. It stores the content inside a heap buffer,
aTxPacketFallback. This buffer is inside the E1000 structure.

If the segment we’re adding is the last one of the packet, the e1kTransmitFrame()
function is used to send the frame.

If the E1000 controller has the loopback
mode turned on, the packet is copied into a
stack buffer.

The packet is treated as a receiving packet.
It’s sent to the receiving part of the E1000
controller.

The vulnerability: CVE-2019-2722

https://nvd.nist.gov/vuln/detail/CVE-2019-2722

What if…?

C
on

te
xt

 D
es

cr
ip

to
r

M
S

S
 =

 0
x1

0

D
at

a
D

es
cr

ip
to

r 1
S

iz
e

=
0x

10

D
at

a
D

es
cr

ip
to

r 2
S

iz
e

=
0

E
oP

 =
 1

C
on

te
xt

 D
es

cr
ip

to
r

M
S

S
 =

 0
xE

D
at

a
D

es
cr

ip
to

r 1
S

iz
e

=
0x

10
00

A
A

A
A

A
A

A
A

A
A

A
A

A
A

…

…

After the parsing of
the first packet,
pThis->u16TxPktLen
contains the value
0x10.

If the second packet
has a maximum
packet size which is
less than 0x10, an
integer underflow
occurs in the cb
variable.

If cb is greater than
E1K_MAX_RX_PKT_SIZE, a stack-based
buffer overflow occurs.

RIP Control!

Good! Now what?

Mitigations

NX/DEP: Stack is not
executable → no shellcode :(

ASLR: Randomization of
addresses → we don’t know
where we are

ASLR
DEP

NX

Reliable leak!

By using the PDMDevHlpPhysRead() function, we can read a static string placed
onto the heap, from this address we can get the base address of VBoxDD.dll/.so

Note: VirtualBox heap is randomized by ASLR, but internal structures are
allocated always at the same offset :)

With the VBoxDD base address, we can use gadgets inside this module to write a
custom ROP chain :))

Result of the leak

ROP Gadgets: arbitrary read

We can use the ‘arbitrary read’ gadget
to read entries from the Import Address
Table (IAT)/ Procedure Linkage Table
(PLT).

ROP Gadget: RTMemExecAllocTag()

By calling the RTMemExecAllocTag()
function, it’s possible to allocate
executable memory and then copy
some shellcode inside it.

The ROP chain then redirects control
flow inside this memory region to
execute the shellcode.

Memory inspection with WinDbg

Windows shellcode - PEB walking

Linux shellcode - fork(), execve() and chill

DEMO TIME! (Windows)

DEMO TIME! (Linux)

VM escape!

Thank you for your attention!

